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Abstract In the porous media literature, unidirectional fibrous systems are broadly
categorized as ordered or disordered. The former class, easily tractable for analysis
purposes but limited in its relation to reality, involves square, hexagonal and various
staggered arrays. The latter class involves everything else. While the dimensionless
hydraulic permeability of ordered fibrous media is known to be a deterministic func-
tion of their porosity φ, the parameters affecting the permeability of disordered fiber
arrays are not very well understood. The objective of this study is to computation-
ally investigate flow across many unidirectional arrays of randomly placed fibers and
derive a correlation between K and some measure of their microstructure. In the
process, we explain the wide scatter in permeability values observed computationally
as well as experimentally. This task is achieved using a parallel implementation of
the Boundary Element Method (BEM). Over 600 simulations are carried out in two-
dimensional geometries consisting of 576 fiber cross-sections placed within a square
unit cell by a Monte Carlo procedure. The porosity varies from 0.45 to 0.90. The com-
puted permeabilities are compared with earlier theoretical results and experimental
data. Analysis of the computational results reveals that the permeability of disordered
arrays with φ < 0.7 is reduced as the non-uniformity of the fiber distribution increases.
This reduction can be substantial at low porosities. The key finding of this study is a
direct correlation between K and the mean nearest inter-fiber spacing δ̄1, the latter
depending on the microstructure of the fibrous medium.
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1 Introduction

Viscous flow through fibrous media is a problem of long-standing interest in engineer-
ing due to its importance in the manufacturing and process industries. With specific
reference to manufacturing, flow through fibrous media is of direct relevance to sev-
eral composites forming operations such as liquid molding, pultrusion, and autoclave
processing. Under creeping flow conditions, the flow of a resin through a fibrous
preform can be macroscopically described by Darcy’s law:

u = −K
µ

· ∇p (1)

which is a linear relationship between the local superficial fluid velocity ū and the
local pressure gradient ∇p. In Eq. 1 the permeability tensor K is a property charac-
teristic of the porous medium. In a mold filling simulation Eq. 1 is combined with the
continuity equation for steady-state incompressible flow (∇ ·u = 0) to yield an elliptic
differential equation for pressure:

∇ ·
(

K
µ

· ∇p
)

= 0. (2)

To numerically solve Eq. 2, nodal permeability values must be specified at points
dictated by the domain discretization method; the accuracy of these nodal values
evidently affects the outcome of simulation. For this purpose, permeability measure-
ment techniques suitable for fibrous media similar to those used in liquid molding
(preforms) have been developed (Ferland et al. 1996; Gebart and Lidstrom 1996;
Parnas et al. 1997; Weitzenbock et al. 1999; Lundstrom et al. 1999). However, these
measurements are subject to large uncertainties, mainly caused by structural varia-
tions and/or deformation of the preform during the experiment. Therefore, in parallel
with the development of more accurate and faster permeability testing methods, a
great deal of effort has been devoted to developing models that would predict the
permeability of a fibrous preform based on knowledge of its structure. Several stud-
ies have appeared in recent years, in which the permeability of fibrous preforms
was sought as function of the geometry of the interstitial space between fiber tows
(Nordlund et al. 2006; Ngo and Tamma 2004; Song et al. 2004; Loendersloot et al.
2004; Yu et al. 2002). The effect on K of the distortions introduced by the stitch-
ing process in otherwise unidirectional plies of fibers was addressed using a network
model that accounted for the statistical distribution of the flow channels opened by
the stitching process (Loendersloot et al. 2004). The fractal nature of the interstitial
spaces of a fibrous perform was accounted for in a model for the in-plane permeabil-
ity of fabrics developed by Yu et al. (2002); good agreement with experimental data
was found. The works mentioned above allow for sophisticated description of the
interstitial space; however, they ignore the flow within the fiber bundles themselves.
Because of the focus at the mm-scale region typically associated with the interstitial
space between fiber bundles, these results are of no direct applicability to the partic-
ular problem we consider here, namely transverse flow through unidirectional fiber
arrays. This type of flow would occur within fiber bundles in a preform during mold
filling. It would also characterize flow in more general fibrous media (for example
fibrous reactors, filters etc.), in which fibers are not utilized in the form of bundles.
Analysis of flow through such systems is not a new problem. In early studies, unidirec-
tional fibrous media were typically idealized as periodic (square or hexagonal) arrays
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of cylinders, and analytical as well as numerical solutions expressing the dimension-
less permeabity K/R2 , where (R) is the fiber radius, as a function of φ, have been
obtained (Happel 1959; Hasimoto 1959; Keller 1964; Gebart 1992; Sangani and Acri-
vos 1982; Drummond and Tahir 1984; Skartsis et al. 1992a; Bruschke and Advani 1993;
Howells 1974; Spielman and Goren 1968; Koch and Brady 1986; Sangani and Yao 1988;
Ghaddar 1995). Random fiber arrays are, in principle, well-suited for analysis using
effective medium approaches. Work in this area (Howells 1974; Spielman and Goren
1968; Koch and Brady 1986) has produced results that are valid at the dilute (high
porosity, φ → 1) limit but questionable in the porosity range of interest to composites
manufacturing, e.g., φ ≤ 0.6. Application of some of the above results (Happel 1959;
Hasimoto 1959; Keller 1964; Gebart 1992; Sangani and Acrivos 1982; Drummond and
Tahir 1984; Skartsis et al. 1992b; Bruschke and Advani 1993) in the area of composites
manufacturing has been reviewed by Skartsis et al. (1992a) and Astrom et al. (1992).

Large discrepancies are frequently observed between theoretical results and exper-
imental data obtained in real fiber beds. A notable feature of experimental data ob-
tained in the latter is the substantial scatter in the measured values of K. It has been
widely assumed that these discrepancies are caused by the non-uniformity of real
fiber beds (Parnas et al. 1997; Skartsis et al. 1992a; Astrom et al. 1992). Indeed, fiber
packing disorder and fiber size variations are typical in fiber preforms. Hence, it is
not unreasonable that a function of porosity alone will not be sufficient to explain
the observed variability in permeability data. In recent years, several authors have
investigated, either analytically or numerically, the effects of fiber size variation, per-
turbed fiber positions, and fiber lattice imperfections on the transverse permeability of
unidirectional fiber arrays (Sangani and Yao 1988; Cai and Berdichevsky 1993; Lund-
strom and Gebart 1995; Papathanasiou and Lee 1997; Papathanasiou 2001). Of
particular interest to our study are the works of Sangani and Yao (1988) and Lund-
strom and Gebart (1995). Sangani and Yao (1988) used a multipole collocation method
to numerically solve the equations of Stokes flow across random fiber arrays. CPU
speed and memory storage limitations allowed systems consisting of no more than 25
fibers to be considered. Mean permeability values were obtained by averaging results
over a number of different configurations. Sangani and Yao (1988) observed signifi-
cant scatter in the permeability values obtained in random fiber arrays and reached
the conclusion that some measure of microstructure should be included in models for
the permeability of random fiber arrays. They did not report any such analysis of their
computational results. Lundstrom and Gebart (1995) developed analytical models for
the permeability of several types of “perturbed” fiber arrays based on the lubrication
approximation. Their models were compared to numerical results by Papathanasiou
(2001) and their predictions were found in very good agreement with simulation for
a wide range of the pertinent parameters. One feature of the model of Lundstrom
and Gebart (1995), that is of particular interest to the present study, is its ability to
incorporate a varying inter-fiber spacing at a given fiber volume fraction; as such it
offers the opportunity to examine the effect of inter-fiber spacing on permeability
from a theoretical perspective. These models, as they relate to the present study, are
discussed in Appendix 1.

In this work we adopt a direct numerical approach using the Boundary Element
Method (BEM). A parallel version of the BEM has been implemented in order to
overcome the difficulties associated with CPU time and memory storage require-
ments. A large number of simulations in large unit cells, each containing 576 fibers,
with varied porosity and varied degrees of local fiber aggregation, were carried out.
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Fig. 1 Fiber distributions generated by a Monte Carlo procedure, each with 576 fibers: (a) φ =
0.7, δmin = 0.1R; (b) φ = 0.7, δmin = 0.4R; (c) φ = 0.7, δmin = 1.0R; (d) φ = 0.5, δmin = 0.1R; (e)
φ = 0.7, δmin = 0.2R; (f) φ = 0.5, δmin = 0.4R

The spatial statistics of the fiber distributions in terms of the mean nearest inter-fiber
distance were quantified. In the following, the problem formulation is given in Sect.
2. This is followed by Sect. 3 for a description of the fiber distributions. In Sect. 4, we
investigate the effect of the size of the unit cell on the computed permeability, com-
pare our results with existing theoretical and experimental results, and finally develop
a correlation between the permeability and the mean nearest inter-fiber spacing.

2 Problem formulation

We consider a fibrous medium composed of long cylindrical fibers with their axes
oriented perpendicular to the direction of bulk flow. The computational unit cell
represents a plane cut normal to the fibers’ axes. As our focus is on the effect of
the spatial distribution of fibers, these are of the same size; however, size variation
can easily be incorporated in a numerical approach. Typical geometries are shown in
Fig. 1. The method used for their generation is discussed in Sect. 3.1 below.

2.1 Governing equations

The governing equations for two-dimensional creeping flow in the inter-fiber space
are:

∇ · u = 0 on � (3)

µ∇2u = ∇p on � (4)
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Here u, p, µ, and � denote the velocity vector, pressure, viscosity, and the 2-D flow
domain, respectively. With reference to Fig. 1, the bulk flow is assumed to occur from
left to right. Symmetry conditions are applied to the boundaries parallel to the flow
direction so that no flow will cross these boundaries. On the boundaries normal to the
bulk flow direction, homogeneous pressures are specified and a pressure drop (�p)
is maintained between the two vertical boundary planes. The boundary conditions, in
terms of tractions and velocities, are:

tx = 0 uy = 0 at y = 0, y = H (5)

tx = �p uy = 0 at x = 0 (6)

tx = 0 uy = 0 at x = L (7)

ux = 0 uy = 0 on �f (8)

where tx is the traction component in the x direction and �f denotes the fiber sur-
face. Equation 8 specifies that no-slip boundary conditions are imposed on the fiber
surfaces. Once the boundary solution is obtained by solving the pertinent equations,
the flowrate Q in the bulk flow direction can be obtained by integrating the velocity
profiles on the inflow or outflow boundary (of height H and length L in Fig. 1). The
effective permeability K can then be calculated from Darcy’s law as K = QµL/H�p.
This is rendered dimensionless by dividing with the square of the fiber radius; it is this
dimensionless permeability K/R2 that is reported and discussed in the remainder of
the manuscript.

2.2 Numerical method and parallelization

The governing equations can be cast into boundary integral representations involving
boundary velocities and tractions only. This technique is well-established (Beer 2001;
Gao and Davies 2002; Pozridikis 1992). Using fundamental solutions, the boundary
integral equations are usually written as:

cij(xp)uj(xp) =
∫

�

u∗
ij(xq, xp)tj(xq)d� −

∫
�

t∗ij(xq,xp)uj(xq)d�, (9)

where u∗
ij is the Stokeslet representing the fluid velocity at xp in the ith direction

due to a point force at xq in the jth direction and t∗ij is the corresponding fundamen-
tal solution for tractions. Isoparametric quadratic elements were used to discretize
Eq. 9, providing second-order approximations for both geometry and field variables.
After discretization, the resulting system of linear equations is usually represented
as [H] {u} = [G]{t}, where {u} and {t} contain two complete sets of both known
and unknown nodal velocity and tractions, respectively, and [H] and [G] are influ-
ence coefficient matrices whose elements are either non-singular, weakly-singular or
singular integrals. The non-singular integrals were typically evaluated by 10-point
Gaussian quadrature. The singular integrals were worked around by the well-known
assumption of rigid-body motion, and the weakly singular integrals were evaluated by
Gauss–Laguerre quadrature with the aid of coordinate transformation (cf. Gao and
Davies 2002). To prevent the deterioration of accuracy of numerical quadrature in
non-singular integrals, the ratio of the closest distance between two nodes at different
elements to the element size should be kept above a certain value. In the worst case,
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the closest distance between two nodes at different elements is equal to the minimum
nearest inter-fiber spacing δmin. Therefore, the discretization of fiber surfaces should
be finer when δmin gets smaller. In this study, the smallest value of δmin is one-tenth of
the fiber radius (R). We typically used 24–36 nodes per fiber. According to an error

estimate proposed by Gao and Davis (2002), the distance-to-element ratio (
δmin

Le
) for

a desired tolerance (εt) should be
δmin

Le
= 8

3
[−10NG/p1 ln(εt/2) − 1]3/4 where NG

is the order of the Gaussian quadrature used and p1 is related to the order of the
singularity (p) as p1 = √

2p/3 + 1. For example, for a tolerance εt < 10−6 and a first
order singularity, it should be δmin/Le > 0.26. It was observed that further refinement
did not change the results significantly.

The inherent shortcoming of the BEM is that it results in dense and non-symmetric
coefficient matrices. For large-scale problems, the solution of this dense linear system
is the most time-consuming part in the BEM (scales with N3

m, Nm being the size
of the system matrix), an additional bottleneck being the Random Access Memory
(RAM) that can be used. These difficulties can be partly overcome by utilizing distrib-
uted memory parallel computers, which offer expanded RAM as well as computing
speedup. For this purpose, we developed an in-house parallel boundary element
code with function calls to ScaLAPACK (Blackford et al. 1997) and MPI (Gropp
and Lusk 1994) libraries. The coarse parallelism inherent to the matrix assembly,
solution, and post-processing phases of the BEM was exploited when implement-
ing the parallel code and the computing tasks were divided element-wise among the
computing nodes. In the solution phase, the parallel L–U decomposition algorithm in
ScaLAPACK (Blackford et al. 1997) and the associated two-dimensional block-cyclic
data-decomposition scheme were adopted in order to improve parallel efficiency. The
code was originally developed on an 8-node Microway Alpha cluster and latter was
ported to run on an IBM Netfinity 4500R cluster with 256 nodes.

3 RVE construction and characterization

3.1 RVE construction

The RVEs considered by this study were constructed to represent a spectrum of
disordered fiber distributions with varied degrees of heterogeneity. They were
generated using a Monte Carlo (MC) procedure, which is similar to the method
for generating an equilibrium ensemble of hard disks (Torquato 2002). The MC pro-
cess starts with an initial fiber packing (square array in our case), then proceeds by
randomly and sequentially perturbing each fiber’s location. This is done by displacing
the coordinates of the centroid of each fiber along each axis by amounts randomly
and uniformly distributed in the interval [−�, �], where � is the maximum allowable
displacement amount. Starting from a square fiber lattice limits the value of � that
can be used; that is � has to be smaller than the inter-fiber spacing corresponding
to the square array. If, in its new location, a fiber neither overlaps with other fibers
nor the RVE boundaries, this new location is accepted; otherwise it is rejected. The
criterion used to test for overlapping is that the distance between two fiber surfaces is
less than δmin, and the distance between the fiber surface and the RVE boundaries is
less than δmin/2, where δmin is a parameter specified by the user. A cycle is completed
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when all fibers have completed an attempted move, irrespective of whether this move
was accepted or rejected. The microstructures generated in this manner are primarily
governed by their porosity φ and the choice of the minimum allowable inter-fiber
distance δmin. In addition to this constraint, the RVE boundaries act like rigid walls
keeping fibers from exiting the RVE. Typical fiber distributions are presented in Fig. 1
for different combinations of φ and δmin. It is evident that small values of δmin result
in patterns showing local (small scale) fiber aggregation while large values of δmin

lead to more or less uniform distributions that show rather small deviations from a
hexagonal lattice. The effect of δmin on fiber aggregation is more pronounced when
φ is large. By varying δmin, a spectrum of fiber distributions can be generated at the
same porosity level, ranging from locally aggregated to homogeneous. For the fiber
distributions generated at all porosity levels, the limiting value of δmin was taken as
0.1R. This decision was made mainly out of numerical concerns as discussed in Sect.
2.2 above. In spite of this artificiality, we found that the resulting fiber distributions
appear similar to the ones we observe in several liquid molded or pultruded unidi-
rectional composites. The high end of δmin is limited by the spacing of a square fiber
array.

3.2 Statistical descriptors

As our objective is to discriminate between various random fiber arrangements and
to describe the permeability of such arrangements as a function of other parameters
beyond porosity, the microstructure of such fiber arrangements needs to be properly
quantified. There are several statistical descriptors that are useful for this purpose.
One descriptor, namely the Ripley’s Kr(r) function (Ripley 1981), can be used to
differentiate between regular, Completely Spatially Random (CSR), and clustered
point patterns. For a set of points, this function is defined as:

Kr(r) = A
N2

N∑
k=1

Ik(r)
wk(r)

(10)

where Ik(r) is the number of points found within distance r of an arbitrary point k, N
is the total number of points in the area of interest A, and wk(r) is a correction factor
taking account of the fact that it is possible that only a part of the observation area
πr2 falls within the area of interest A. Kr(r) describes characteristics of point patterns
at many length scales. The Kr-function of a Poisson distribution is Kr(r) = πr2 and
draws a dividing line between an inhibited or regular pattern and a clustered pattern.
Estimates of Kr(r) are expected to be smaller than πr2 if the points form an inhib-
ited or regular pattern, and to be larger than πr2 in the presence of clustering or
heterogeneity (Pyrz 1994; Diggle 2003). Furthermore, the extent of the deviation of
Kr(r) from πr2 and the length scale at which such deviations occur give some addi-
tional insight into a microstructure. The L-plot, a linearized plot of Kr(r) defined as:
L(r) = √

Kr(r)/π , is frequently used to show these deviations and the length scales
at which they occur. The L-plot of a Poisson distribution is simply a straight line of
45-degree slope through the origin. In Fig. 3, we apply Ripley’s K-function to charac-
terize the fiber distributions given in Fig. 1. It is clear that at large distances all fiber
distributions approach CSR and that significant deviations from CSR occur only at
small length scales. This suggests that the fiber distributions are better distinguished
by their small-scale features. It is also concluded that the fiber distributions considered
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Fig. 2 L(r) statistics for the fiber distributions shown in Fig. 1

by this study belong to the “regular” category (Torquato 2002; Diggle 2003). This is
not a surprise as the non-zero physical dimension of a fiber makes the MC process
essentially a self-inhibiting one.

Another useful statistical descriptor based on local information is the mean nearest
neighbor distance d̄1. For each fiber k one can find a number of “neighbors”, which
are assigned with a subscript (i) in such a way that the nearest one corresponds to i = 1
and the others are in ascending order according to relative distances. These center-to-
center distances are denoted as {d(k)

i }. The nearest neighbor distance for a reference
fiber k is therefore the minimum in this distance set, i.e., d(k)

1 = min{d(k)
i }. For a

population of fibers, the mean nearest neighbor distance, denoted as d̄1, is simply the
arithmetic mean of the set d(k)

1 . This metric is frequently used to indicate the degree of
local heterogeneity in spatial point patterns (Ripley 1981; Diggle 2003). Small values
of d̄1 are associated with disordered patterns, while large d̄1 indicate a homogeneous
arrangement. By subtracting the fiber diameter D, d(k)

1 is translated to δ
(k)

1 , which is
the closest spacing between the kth reference fiber and its neighbors. Because δ1 takes
explicit account of the fluid space between two fibers, we will use δ1 in the rest of this

paper. We will also refer to the arithmetic mean of
{
δ
(k)

1

}
(k = 1, . . ., Nf) as the mean

nearest inter-fiber spacing, denoted as δ̄1. With reference to Fig. 1, the statistics of
δ1 for various arrays are shown in Fig. 2. These are fitted to the Weibull distribution
function:

F(δ1) = 1 − exp
[−λ (δ1 − γ )β

]
, (11)

where λ, γ , and β are the shape, location, and slope parameters, respectively. The
estimated values for λ, γ , and β are given in Table 1. Note that γ is equivalent to δmin.
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Fig. 3 Histograms of δ1 for the fiber distributions shown in Fig. 1 and the corresponding non-linear
fit as of Eq. 11. The normalized count on the Y-axis is the number of counts in the bin class divided
by the total number of counts times the bin class width

Table 1 Parameter fitting according to Eq. 11 for the distributions δ1 shown in Fig. 1a–e

Case γ β λ COD γ +1/λ δ̄1

(a) 0.1 1.090 ± 0.014 3.052 ± 0.072 0.997 0.428 0.450
(b) 0.4 1.030 ± 0.013 4.255 ± 0.077 0.997 0.635 0.649
(c) 1.0 0.957 ± 0.009 12.07 ± 0.271 0.998 1.082 1.080
(d) 0.1 1.003 ± 0.008 8.560 ± 0.105 0.999 0.217 0.216
(e) 0.2 1.016 ± 0.023 10.28 ± 0.373 0.997 0.297 0.295
(f) 0.4 1.030 ± 0.012 20.01 ± 0.526 0.999 0.450 0.454

COD stands for coefficient of determination

It is also noticed that all the estimated β values are around one, implying the distribu-
tions of δ1 are essentially exponential distributions. For an exponential distribution, its
population mean is estimated as γ + 1/λ. Comparing the last two columns of Table 1,
it can be seen that δ̄1, as calculated from the exponential distributions, are reason-
ably close to δ̄1 based on arithmetic averaging. It is known that at the same porosity
level, δ̄1 for a more uniform fiber distribution is greater than that for a non-uniform
distribution (Ripley 1981; Diggle 2003).

4 Results and discussion

4.1 RVE size

The stochastic nature of the fiber distribution leads to scatter in the computed per-
meability data. In this study, a number (Nr) of random realizations was generated for
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Table 2 Numerical simulation settings

φ δmin/R Nf Nr

0.45 0.10, 0.20, 0.30 576 20
0.50 0.10,0.20, 0.30, 0.40 576 20
0.60 0.10,0.20,0.30, 0.40, 0.60,0.75 576 20
0.70 0.10,0.20,0.30, 0.40, 0.60, 0.80, 0.90 576 20
0.80 0.10,0.20,0.40, 0.60, 0.80, 1.00, 1.20 576 20
0.90 0.10,0.30, 1.00, 1.50 576 20

each class of fiber distributions (characterized by φ and δ̄1) and the permeability values
were computed for the resulting unit cells. The average dimensionless permeability
and its standard deviation are then calculated as:

〈K〉 = 1
Nr

Nr∑
i

Ki (12)

σ (K) = 1
Nr − 1

√√√√ Nr∑
i

(Ki − 〈K〉)2, (13)

where 〈 〉 denotes ensemble-averaging and Nr is the ensemble size (Nr = 20 in this
study; Table 2). The ensemble-averaged mean minimum inter-fiber spacing 〈δ̄1〉 was
calculated in the same manner. The average permeability, as defined in Eq. 12, is
known to be affected by the RVE size through its influence on fiber statistics and the
influence of the boundary conditions on the computed flux. In principle, when the
RVE size is sufficiently large or, under the assumption of ergodicity, when a suffi-
ciently large ensemble size is used for relatively small RVEs, a correct or, convergent,
mean behavior will be obtained, and the computed average permeability becomes the
effective property. To determine the appropriate RVE size for a finite ensemble size,
say Nr = 20, computations were carried out on RVEs containing different numbers of
fibers (16 < Nf < 600), which were generated with δmin = 0.1R at φ = 0.45, 0.55, 0.70.
The results are given in Fig. 4. A size effect is clear in these results as the com-
puted average, 〈K〉/R2, is observed to vary with the RVE size. It is also notable
that the sample standard deviation is affected significantly by the RVE size. For
Nr = 20 realizations of small RVEs (Nf = 16) with φ = 0.70, the averaged perme-
ability (〈K〉/R2 = 0.105) and the associated standard deviation (σ(K) = 0.07) are
comparable to those reported in Sangani and Yao (1988) while the mean-normalized
standard deviation is about five times smaller than that reported in Ghaddar (1995).
At Nf > 100, 〈K〉/R2 seems to reach a plateau. This suggests that the size effect dimin-
ishes with an increase in RVE size, as expected. Based on these observations, an RVE
size of Nf = 576 and a ensemble size of Nr = 20 were chosen in this study.

4.2 Comparison with earlier results

Simulations were carried out in the porosity range 0.45 <φ < 0.90 and δmin/R between
0.1 and 1.5, depending on φ. The conditions are summarized in Table 2. The obtained
permeability results are compared to earlier theoretical as well as to selected experi-
mental data for unidirectional fiber arrays. It should be pointed out that earlier results
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Fig. 4 RVE size effect on the averaged permeability. The circles, squares, and diamonds represent
the ensemble-average permeability, averaged over 20 realizations of fiber distributions which were
generated with δmin = 0.1R at φ = 0.45, 0.55, 0.70, respectively. The error bars indicate the standard
deviations ±σ(K)

Table 3 Comparison of our results for the dimensionless permeability of random fiber arrays at var-
ious levels of porosity and (δmin/R)—last three columns—with the results of Sangani and Yao (1988).
The extent of microstructural variation at each porosity level was not examined in Sangani and Yao
(1988), so a more direct comparison is not possible

Porosity Sangani and Yao (1988) δmin/R = 0.1 δmin/R = 0.2 δmin/R = 0.4

0.9 1.67 ± 0.12 1.64 ± 0.06 1.63 ± 0.06 1.57 ± 0.06
0.7 0.102 ± 0.008 0.091 ± 0.004 0.092 ± 0.002 0.93 ± 0.002
0.5 0.0094 ± 0.0017 0.0084 ± 0.00045 0.0099 ± 0.00034 0.013 ± 0.00017

have not identified microstructure as a pertinent parameter and thus, the comparisons
presented here are made with only φ as a parameter. In Fig. 5, our results at each
porosity level are obtained for a range of the microstructural parameter (δmin/R),
whose relation with K/R2 will become clear latter in the manuscript. Here these
results are compared to theoretical predictions for periodic (square and hexagonal)
and random arrays and earlier results. In the range 0.765 < φ < 0.90, the permeability
results of this work are in good agreement with the predictions of Sangani and Yao
(1988) as well as of Spielman and Goren (1968). When φ < 0.7, our results are in good
agreement with Sangani and Yao (1988), while Spielman and Goren (1968) predicts
an unrealistic flow blockage below φ ∼ 0.6. A more detailed comparison of our results
to those of Sangani and Yao (1988) is given in Table 3.

In Fig. 6, permeability results are presented in terms of the Kozeny constant,

kc, defined as kc = φm2

K , where m is the mean hydraulic diameter of the porous
medium. For visual clarity, only the mean values of our results are shown in that figure.
Typically, kc is only constant in a very narrow range of porosity. For random arrays,
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Fig. 5 Comparison of this
work with earlier
computational and theoretical
results
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kc, as predicted by Spielman and Goren (1968), is about 9–10 for 0.75 < φ < 0.85.
Its mean value at φ = 0.70 is around 9.34 as predicted by Sangani and Yao (1988).
Evidently, kc is not a constant but varies with microstructure at any given porosity
level. Our results indicate that kc varies from 8 to 16 in the range 0.45 ≤ φ ≤ 0.90. At
low porosities and in fiber systems of relevance to composites manufacturing, experi-
mental data for kc (Lam and Kardos 1991; Gutowski et al. 1987) show a scatter that is
very similar to the scatter of our BEM results, in general extending above the predic-
tions of regular arrays. It is interesting to notice that in the mid-to-low porosity range
(0.45 ≤ φ ≤ 0.70) the permeability behavior is not limited by the theoretical results
for the square array. Indeed, all our BEM results, the earlier numerical results of San-
gani and Yao (1988) as well as experimental data (Lam and Kardos 1991; Gutowski
et al. 1987) show that the permeability of random arrays can fall below (or, equiva-
lently, kc can lie above) that of a square array. At high porosities (φ ∼ 0.8–0.9) the
opposite is true; however, we believe this is due to the fact that at these high porosity
levels fiber clustering occurs, rendering the systems more permeable. Unfortunately
the definition of a random fiber array is ambiguous in earlier literature. To capture the
permeability behavior in such arrays more precisely, additional microstructure details
have to be taken into account.

4.3 Correlation between K and δ̄1

Figure 7 shows two representative flow fields computed for unit cells containing 576
fibers at φ = 0.70. The difference between the two fiber distributions lies in the choice
of δmin (δmin = 0.1R in Fig. 7(a) and δmin = 1.0R in Fig. 7(b)) and the resulting statistics
of δ1. The flow contours show fluid speed at gray scales. From these two numerical
examples, we see clearly how drastically the microstructure affects the distribution
of flow in the interstitial space. A larger degree of local heterogeneity (caused by
a smaller value of δmin and the resulting statistics of δ1, for example Fig. 2) results
in a broader distribution of fluid speeds. In this case, the fluid is stagnant between
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Fig. 6 Comparison of this work with related computational and experimental data in terms of the
Kozeny constant

fiber aggregations or within closed rings of fibers, while a few major flow paths with
relatively high flow speed exist. In the case of δmin = 1.0R a larger number of smaller
flow paths form and the fluid speed is more uniform.

It is evident from Fig. 7 that fiber arrays of the same porosity can exhibit drastically
different patterns of interstitial flow. It follows that the use of porosity alone cannot
be expected to uniquely define their permeability. It also indicates that the reasons
for the observed scatter in the latter, whether calculated numerically or determined
by experiment, is to be sought in the underlying microstructure. In Fig. 8, the numer-
ically computed 〈K〉 at each porosity level are plotted against

〈
δ̄1

〉
/R. In this figure,

the starting point of each curve is the permeability of the hexagonal array (filled
square), for which the inter-fiber spacing is uniquely connected to porosity. From
this plot, a distinct correlation between 〈K〉/R2 and

〈
δ̄1

〉
/R is evident. In the range

0.45 < φ < 0.7 decreasing δ̄1 or, equivalently, moving from a uniform array to arrays
showing progressively higher degree of disorder, results in a permeability reduction.
This trend is more pronounced at lower porosities (φ = 0.45, 0.5). A similar perme-
ability reduction as a result of non-uniformity in fiber distribution (quantified by the
Morishita index in that case) was also reported in Bechtold and Ye (2003). This cor-
relation can be qualitatively explained by the fact that, in the absence of large-scale
clustering, the dominant flow resistance around each fiber is primarily caused by the
narrowest gap formed between this fiber and its neighbors. In disordered fiber arrays
the presence of narrow gaps has the effect of either deflecting a flow path, or reducing
the corresponding flow rate. In both ways, narrower gaps will reduce the permeability.
Figure 8 also shows the predictions of the lubrication model of Lundstrom and Gebart
(1995) for regular arrays in which the inter-fiber spacing is modified by changing the
fiber size while maintaining the porosity constant (see Appendix 1 below). It is clear
that while Lundstrom and Gebart (1995) predicts the same qualitative features of
the K vs. δ1 behavior (a reduction of K with decreasing δ1, the effect becoming more
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Fig. 7 Contours of fluid speed for transverse flows across unidirectional random fiber arrays: (a)
φ = 0.7, δmin = 0.1R, K/R2 = 9.427 × 10−2. (b) φ = 0.7, δmin = 1.0R, K/R2 = 1.024 × 10−1
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Fig. 8 Correlation of the normalized ensemble-averaged permeability (〈K〉/R2) with the ensemble-
averaged mean nearest inter-fiber spacing 〈δ̄1〉/R. Also shown are permeability values for hexagonal
arrays as well as the predictions of the lubrication model of Lundstrom and Gebart (1995)—broken
line

pronounced as the porosity decreases), there are significant quantitative differences
between the lubrication model and the computational results. Specifically, the attain-
able range of δ1 at each porosity is smaller in Lundstrom and Gebart (1995) as required
by the need to justify use of the lubrication approximation. In addition, our computa-
tional results fall consistently above the predictions of the lubrication theory. This is
not surprising, since the flow in Lundstrom and Gebart (1995) is restricted to one unit
cell, while in our computational models complex two-dimensional flow networks form
(Fig. 7). In such 2D flow networks, the relative influence of small gaps on permeability
is reduced, as flow is deflected to adjoining flow paths. Obviously, no such deflection
is possible in a single unit-cell model. The predicted reduction in permeability caused
by non-uniformity in fiber distribution is quite substantial. Comparing the curves
corresponding to φ = 0.45 and φ = 0.5 in Fig. 8, it can be seen that the perme-
ability of an array with φ = 0.5 and

〈
δ̄1

〉
/R = 0.17 is lower than the permeability

of a hexagonal array at φ = 0.45. Care should therefore be exercised when per-
meability models for regular arrays (for example Gebart (1992), Drummond and
Tahir (1984), Bruschke and Advani (1993), Spielman and Goren (1968)) are used
to derive estimates for the permeability of realistic and thus non-uniform arrays of
fibers. At φ > 0.7 an opposite trend is shown; this is probably due to the formation,
at these high porosities, of flow channels whose size is comparable to the size of fiber
aggregates.

In the porosity range of interest to composites manufacturing (0.45 ≤ φ ≤ 0.70),
Fig. 8 as well as the dependence between K and δ1 suggested by Lundstrom and
Gebart (1995) indicate that a functional form describing the relation between

〈
δ̄1

〉
and

〈K〉 should be:
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〈K〉
R2 =

(〈
δ̄1

〉
R

)n

f (φ) , (14)

where the exponent n is in general a function of porosity as indicated by the vary-
ing slopes of the data sets 〈K〉 vs.

〈
δ̄1

〉
corresponding to different (φ) in Fig. 8. In

seeking a functional form for f (φ), we recall that Eq. 14 should reduce to existing
models for K when the fiber array becomes uniform. When the array approaches a
uniform hexagonal array, δ̄1 should equal the inter-fiber spacing of a hexagonal array

[δhex/R = 2(

√
π/2

√
3(1 − φ) − 1)] and the corresponding dimensionless permeability

will be
Khex

R2 =
√

3
3

16

9π
√

2
(
δhex

2R
)2.5, both of which are functions of porosity only. To

be asymptotically correct, the form of f (φ) should therefore be:

f (φ) =
(

R
δhex

)n Khex

R2 (15)

and thus Eq. 14 yields:

〈K〉
Khex

=
( 〈

δ̄1
〉

δhex

)n

. (16)

The exponent n is determined by fitting the computational results at each porosity
according to Eq. 16. This gives the lowest estimate of n as n = 0.164 at φ = 0.7 and the
highest estimate n = 0.628 at φ = 0.45. A plot of n vs. φ suggests a linear relationship
n = α + βφ with α = 1.51 ± 0.06 and β = −1.93 ± 0.10. Analysis of the predictions
of Lundstrom and Gebart (1995) (Appendix 1) in the same manner, also results in
a linear relation between n and φ. Overall, a correlation between

〈
δ̄1

〉
and 〈K〉 for

random fiber arrays can be written as:

〈K〉
Khex

=
( 〈

δ̄1
〉

δhex

)α+βφ

. (17)

Taking logarithms in both sides of Eq. 17 results in:

ln (〈K〉/Khex) = n(φ) ln
(〈
δ̄1

〉
/δhex

)
. (18)

In Fig. 9 the permeability data are scaled and plotted as suggested by Eq. 18. The
permeability corresponding to hexagonal arrays can be found at the top-right corner
of the graph (coordinates (0,0)). The predictions of Lundstrom and Gebart (1995),
scaled as indicated by Eq. 18, are also shown. Figure 9 tells us that as a fiber distri-
bution changes from ordered to disordered, 〈K〉 will deviate from the permeability of
hexagonal arrays along the path defined by Eq. 18. The corresponding least-square
fit indicates a slope around one (0.994 ± 0.018) and an intercept very close to zero
(−0.008 ± 0.01), as anticipated from Eq. 18.

5 Summary

We carried out an extensive investigation of Stokes flow across unidirectional disor-
dered fiber arrays. The RVEs that are representative of these arrays were constructed
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Fig. 9 A master curve, expressing the correlation between permeability and the mean nearest inter-
fiber spacing in the porosity range 0.45 ≤ φ ≤ 0.70, plotted as ln

(
K/Khex

)
vs. n(φ) ln

(
δ̄1/δhex

)
. The

predictions of the model of Lundstrom and Gebart (1995) for perturbed hexagonal arrays are shown
as a thick gray line on the top-right corner of the graph

using a Monte Carlo procedure in the porosity range 0.45 ≤ φ ≤ 0.90, each consist-
ing of 576 fibers. With 20 realizations at each point in (δ1, φ) space, a total of 620
simulations were carried out. This computationally intensive task was accomplished
by developing and running an in-house parallel Boundary Element code on distrib-
uted memory parallel computers. Our results were compared to existing theoretical,
numerical, and experimental results. Following this, we point out the need to consider
some measure of the underlying fiber spatial statistics as an additional parameter
affecting permeability. The microstructural characteristics of the model fiber distri-
butions were analyzed and the mean nearest inter-fiber spacing δ̄1 was identified as
a parameter that correlates with the numerical estimates of K. Specifically, we found
that, in the range of porosity studied, K is a statistical function of δ̄1, with its aver-
age behavior 〈K〉 expressed by ln (〈K〉/Khex) /n = ln

(〈
δ̄1

〉
/δhex

)
, where (n) is a linear

function of porosity and Khex and δhex are also known functions of porosity. The devi-
ation of (K) from this average behavior is related to the variability of the underlying
microstructure, as expressed by the variance of δ1.
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ment of Energy, Office of Freedom CAR and Vehicle Technologies, Lightweight Materials Program.
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Appendix 1

Lundstrom and Gebart (1995) studied, in the context of the lubrication approxima-
tion, the effect of perturbation of fiber radii as well as perturbation of fiber positions
on the transverse permeability of ordered unidirectional fiber arrays. In the case of
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direct relevance to this study, perturbed arrays were generated from regular hexag-
onal ones, whose fibers’ size was allowed to vary in a regular manner while the total
volume fraction remained constant. A hexagonal array of fibers of radius (R) is thus
replaced by a sequence of alternating “larger” and “smaller” fibers, whose radii are
(R+ε) and (R−ε), respectively. The porosity is held constant by changing the unit-cell
dimensions in order to accommodate the changed fiber radii. It is noted that in this
case there are two inter-fiber gap widths; one forms between large and adjacent small
fibers and is denoted as δ1 while the other forms between adjacent small fibers and is
δ2 = δ1 + 2ε. The expression for the narrower gap δ1 in terms of porosity φ and the
size parameter εm(εm = ε/R) is:

δ1

R
= 2√

3

√√√√π
[
(1 − εm)2 + 1

2 (1 + εm)2
]

√
3 (1 − φ)

− 2. (A1)

In the range of small εm(εm < 0.35) Eq. A1 shows a monotonic behavior; as εm
increases, δ1 decreases. The transverse permeability K′ of the resulting fiber array is:

K′

R2 = 16
√

3

9π
√

2
·
[

2
√

1 − ε2
m +

√
[1 − εm]δ1

δ1 + 2ε

]−1

·
(

δ1

2R

)5/2

. (A2)

The behavior of K′ mirrors the trend shown in Eq. A1 for the minimum inter-fiber
spacing δ1. The predictions of Eqs. A1, A2 for ε/R < 0.35 are shown in Fig. 8. The
predictions of Eq. A2 are also plotted as suggested by Eq. 16 and the correspond-
ing exponent (n) is calculated. This is found to be linearly dependent on porosity.
Following this, the predictions of Eqs. A1, A2 are scaled as suggested by Eq. 18 and
plotted along with our computational results in Fig. 9.
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